Abstract
Abstract The Southern Great Plains (SGP) region exhibits a relatively high frequency of periods with extremely high rainfall rates (RR) and hail. Seven months of 2017 are simulated using the Weather Research and Forecasting (WRF) Model applied at convection-permitting resolution with the Milbrandt–Yau microphysics scheme. Simulation fidelity is evaluated, particularly during intense convective events, using data from ASOS stations, dual-polarization radar, and gridded datasets and observations at the DOE Atmospheric Radiation Measurement site. The spatial gradients and temporal variability of precipitation and the cumulative density functions for both RR and wind speeds exhibit fidelity. Odds ratios > 1 indicate that WRF is also skillful in simulating high composite reflectivity (cREF, used as a measure of widespread convection) and RR > 5 mm h−1 over the domain. Detailed analyses of the 10 days with highest spatial coverage of cREF > 30 dBZ show spatially similar reflectivity fields and high RR in both radar data and WRF simulations. However, during periods of high reflectivity, WRF exhibits a positive bias in terms of very high RR (>25 mm h−1) and hail occurrence, and during the summer and transition months, maximum hail size is underestimated. For some renewable energy applications, fidelity is required with respect to the joint probabilities of wind speed and RR and/or hail. While partial fidelity is achieved for the marginal probabilities, performance during events of critical importance to these energy applications is currently not sufficient. Further research into optimal WRF configurations in support of potential damage quantification for these applications is warranted. Significance Statement Heavy rainfall and hail during convective events are challenging for numerical models to simulate in both space and time. For some applications, such as to estimate damage to wind turbine blades and solar panels, fidelity is also required with respect to hail size and joint probabilities of wind speed and hydrometeor type and rainfall rates (RR). This demands fidelity that is seldom evaluated. We show that, although this simulation exhibits fidelity for the marginal probabilities of wind speed, RR, and hail occurrence, the joint probabilities of these properties and the simulation of maximum size of hail are, as yet, not sufficient to characterize potential damage to these renewable energy industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.