Abstract

Abstract To develop a finescale dataset for the purpose of analyzing historical climatic change over the Tibet Plateau (TP), a high-resolution regional climate simulation for 1979–2011 was conducted using the Weather Research and Forecasting (WRF) Model driven by the ERA-Interim (ERA-Int). This work evaluates the high-resolution (30 km) WRF simulation in terms of annual variation, spatial structure, and 33-yr temporal trends of surface air temperature (Tair) and precipitation (Prec) over the TP, with reference to station observations. Another focus is on the examination of the height–temperature relationship. Inheriting from its forcing, the WRF simulation presents an apparent cold bias in the TP. The cold bias is largely reduced by a lapse rate correction of the simulated surface air temperature with help of the station and model elevations. ERA-Int presents the same sign of Tair and Prec trends as the observations, but with smaller magnitude, especially in the dry season. Compared to its forcing, the WRF simulation improves the simulation of the annual cycles and temporal trends of Tair and Prec in the wet season. In the dry season, however, there is hardly any improvement. The observed Tair presents a downward linear trend in the lapse rate. This feature is examined in the WRF simulation in comparison to ERA-Int. The WRF simulation captures the observed lapse rate and its temporal trend better than ERA-Int. The decreasing lapse rate over time confirms that Tair change in the TP is elevation dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.