Abstract
Chip on board wire bonding presents challenges to modern wire bonding technology which include smaller, closely spaced wire bond pads; bonding to soft substrates without special processing and pad construction; and diverse first bond and second bond metallurgies. These challenges are addressed by extensive bonding accuracy tests, a design of experiments approach for optimizing wire bond process parameters, reliability testing, and detailed materials characterization of the metallurgical integrity of the wire bonds. The thermo-mechanical integrity of the wire bond interconnects was evaluated by wire pull and hot storage tests. Hot storage testing allowed for detection of samples with an electrolytic gold surface finish that was too thin, and exhibited a contamination-corrosion condition of the nickel under-plating. Other samples with an excessively thick, rough textured nickel under-plating layer exhibited poor wire bond-ability. The methodology of materials analyses of the metallurgy of the wire bond interconnects is described. The paper illustrates a wire bond lift technique that is used to inspect for cratering damage and the “area-uniformity” of gold aluminum intermetallics. An improved understanding of the wire bonding process was achieved by showing the dependence of the visual appearance of the wire bonds on wire bond process parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.