Abstract

Abstract Low to ultralow permeability formations require "special" treatments/stimulation to make them produce economical quantities of hydrocarbon and at the moment, multi-stage hydraulic fracturing (MSHF or MHF) is the most commonly used stimulation method for enhancing the exploitation of these reservoirs. Recently, the slot-drill (SD) completion technique was proposed as an alternative treatment method in such formations (Carter 2009). This paper documents the results of a comprehensive numerical simulation study conducted to evaluate the production performance of the SD technique and compare its performance to that of the standard MSHF approach. We investigated three low permeability formations of interest, namely a shale-gas, a tight-gas, and a tight/shale-oil formation. The simulation domains were discretized by using Voronoi gridding schemes to create representative meshes of the different reservoir and completion systems modeled in this study. The results from this study indicated that the SD method does not, in general, appear to be competitive in terms of reservoir performance and recovery compared to the more traditional MSHF method. Our findings indicate that the larger surface area to flow that results from the application of MSHF is much more significant than the higher conductivity achieved using the SD technique. However, there may exist cases, e.g., lack of adequate water volumes for hydraulic fracturing, or very high irreducible water saturation that leads to adverse relative permeability conditions and production performance, in which the low-cost SD method may make production feasible from an otherwise challenging (if not inaccessible) resource.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.