Abstract
The regular image fusion method based on scalar has the problem how to prioritize and proportionally enrich image details in multi-sensor network. Based on multiple sensors to fuse and manipulate patterns of computer vision is practical. A fusion (integration) rule, bit-depth conversion, and truncation (due to conflict of size) on the image information are studied. Through multi-sensor images, the fusion rule based on weighted priority is employed to restructure prescriptive details of a fused image. Investigational results confirm that the associated details between multiple images are possibly fused, the prescription is executed and finally, features are improved. Visualization for both spatial and frequency domains to support the image analysis is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Electrical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.