Abstract

Stock price forecasting in the field of interest for many stock investors to earn more profit from stock trading. Nowadays, machine learning researchers are also involved in this research field so that fast, accurate and automatic stock price forecasting can be achieved. This research paper evaluated GRU network’s performance with weight decay reg-ularization techniques for predicting price of stocks listed NEPSE. Three weight decay regularization technique analyzed in this research work were (1) L1 regularization (2) L2 regularization and (3) L1_L2 regularization. In this research work, six randomly selected stocks from NEPSE were experimented. From the experimental results, we observed that L2 regularization could outperform L1 and L1_L2 reg-ularization techniques for all six stocks. The average MSE obtained with L2 regularization was 4.12% to 33.52% lower than the average MSE obtained with L1 regularization, and it was 10.92% to 37.1% lower than the average MSE obtained with L1_L2 regularization. Thus, we concluded that the L2 regularization is best choice among weight regularization for stock price prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.