Abstract

Precast, prestressed hollow core slabs (HCS) are commonly used by the construction industry for floor and roof systems worldwide. Generally, the web shear strength governs the shear design of such members. This is because the web width resisting shear stresses is relatively small and the prestressing force at the bottom of the slabs restrains flexural cracking. Although most of the available design codes follow Mohr’s circle of stress for estimating the web shear cracking capacity of HCS, they produce different and scattered predictions. This paper gives more insight into the web shear design provisions of prestressed HCS in five of the available design codes. These codes include ACI 318, Eurocode 2, European standard EN 1168, CSA-A23.3, and AASHTO LRFD design specifications. A set of 229 data points was established from experimental investigations available in the literature on prestressed HCS that failed in the web shear. The dataset was used for evaluating the web shear design methods in the five codes. The results of the analysis indicated that both the simplified method of AASHTO and the ACI 318-19 method produced very conservative predictions. In contrast, the Eurocode 2 method produced unconservative predictions for most of the specimens in the dataset, whereas the ACI 318-05 method gave unconservative predictions for deeper sections. On the other hand, reasonable predictions were obtained by the EN 1168 method while the CSA-A23.3 method provided better predictions. Proposed modifications were presented for improving the predictions of the ACI 318, Eurocode 2, and EN 1168 web shear design methods for prestressed HCS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call