Abstract

ObjectivesTo evaluate two-body wear (2BW) and three-body wear (3BW) of different CAD/CAM and direct restorative materials against zirconia using a dual-axis chewing simulator and an ACTA wear machine. Methods3 CAD-CAM resin-based composite or polymer infiltrated ceramic network blocs, 1 lithium disilicate CAD-CAM ceramic (LS2), 3 direct resin composites, amalgam and bovine enamel were tested. For 2BW, 8 flat specimens per material were produced, grinded, polished, stored wet (37 °C, 28d) and tested (49 N, 37 °C, 1,200,000 cycles) against zirconia. For 3BW, specimens (n = 10) were stored accordingly, and tested against a zirconia antagonist wheel (3Y-TZP, d = 20 mm, h = 6 mm; 200,000 cycles, F = 15 N, f = 1 Hz, 15% slip) in millet seed suspension. Wear resistance was analysed in a 3D optical non-contact profilometer, measuring vertical wear depth and volume loss for 2BW and mean wear depth and roughness (Ra) for 3BW. Vickers hardness (15 s, HV2) was measured. Statistical analysis was performed using non-parametric tests (Mann-Whitney-U test, p < 0.05). Results2BW and 3BW have a different impact on material surfaces. Similar wear resistance was observed for direct and indirect resin based materials with analogous filler configurations in both methods. Bovine enamel exhibited the best wear resistance in 2BW, but the least wear resistance in 3BW against zirconia. Regarding 2BW, a direct/indirect composite material pair of the same manufacturer showed the significantly highest mean volume losses (2.72/2.85 mm³), followed by LS2 (1.41 mm³). LS2 presented the best wear resistance in 3BW (mean wear depth 2.85 µm), combined with the highest mean Vickers hardness (598 MPa). No linear correlation was found between Vickers hardness and both wear testing procedures. The zirconia antagonists showed no recordable signs of wear. SignificanceDental restorative materials behave differently in 2BW and 3BW laboratory testing. Vickers hardness testing alone cannot hold for a correlation with wear behavior of materials. Micromorphological investigation of material composition can reveal insights in wear mechanisms related to variations in filler technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.