Abstract

Structures for lossless ion manipulations (SLIM) have recently enabled a powerful implementation of traveling wave ion mobility spectrometry (TWIMS) for ultrahigh resolution separations; however, experimental parameters have not been optimized, and potential significant gains may be feasible. Most TWIMS separations have utilized square-shaped waveforms applied by time-dependent voltage stepping across repeating sets of electrodes, but alternative waveforms may provide further improvements to resolution. Here, we characterize five waveforms (including square and sine) in terms of their transmission efficiency, IMS resolution, and resolving power, and explore the effects of TW amplitude and speed on the performance of each. We found, consistent with previous work, separations were generally improved with higher TW amplitudes, moderately improved by lower speeds (limited by ion "surfing" with the waves), and found decreases in signal intensity at the extremes of operating conditions. The triangle and asymmetric "ramp forward" shaped profiles were found to provide modestly greater resolution and resolving power, an observation we tentatively attribute to their relatively uniform fields and minimal low-field regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.