Abstract

Although volatile organic compounds located in buried waste repositories or distributed through the unsaturated soil zone have the potential to migrate to the atmosphere by vapor diffusion, little attention has been paid in the past to estimating the importance of volatilization losses. In this paper a screening model is introduced which evaluates the relative volatilization losses of a number of organic compounds under standard soil conditions. The model is an analytic solution to the problem wherein the organic chemical is located at time zero at uniform concentration in a finite layer of soil covered by a layer of soil devoid of chemical. The compound is assumed to move by vapor or liquid diffusion and by mass flow under the influence of steady upward or zero water flow while undergoing first‐order degradation and linear equilibrium adsorption. Loss to the atmosphere is governed by vapor diffusion through a stagnant air boundary layer. Calculations are performed on 35 organic compounds in two model soils with properties characteristic of sandy and clayey soil. The model identifies those compounds with high potential for loss during 1 year after incorporation under 100 cm of soil cover and also is used to calculate the minimum soil cover thickness required to reduce volatilization losses to insignificant levels during the lifetime of the compound in the soil. From the latter calculation it was determined that certain compounds may volatilize from deep subsurface locations or even groundwater unless the soil surface is sealed to prevent gas migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call