Abstract

The manufacture and downstream processing of virus-like particles (VLPs) using the baculovirus expression vector system (BEVS) is complicated by the presence of large concentrations of baculovirus particles, which are similar in size and density to VLPs, and consequently are difficult to separate. To reduce the burden of downstream processing, CRISPR-Cas9 technology was used to introduce insertion-deletion (indel) mutations within the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp64 open reading frame, which encodes the major envelope protein of AcMNPV. After comfirming the site-specific targeting of gp64 leading to reduced budded virus (BV) release, the gag gene of human immunodeficiency virus type 1 was expressed to produce Gag VLPs. This approach was effective for producing VLPs using the BEVS whilst simultaneously obstructing BV release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call