Abstract
In order to develop a method for evaluating vibrational energies and wave functions of a polyatomic molecule by quantum computing, we introduce the reduced multistate contracted variational quantum eigensolver (RMC-VQE) method, which is a variant of the multistate contracted VQE method [Parrish et al., Phys. Rev. Lett. 122, 230401 (2019)], and apply the RMC-VQE method to a two-mode model of CO2. In the RMC-VQE method, much fewer matrix elements of the Hamiltonian are evaluated on the quantum computer than in the MC-VQE method. By measuring the matrix elements of the Hamiltonian using the quantum computer ibm_kawasaki and diagonalizing the Hamiltonian matrix on a classical computer, we obtain the vibrational energies of the Fermi doublet, which differ from the exact energies obtained using a classical computer by less than 0.1 cm−1. We also obtain accurate vibrational wave functions of the Fermi doublet states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.