Abstract
To better monitor the vertical crustal movements and sea level changes around Greenland, multiple data sources were used in this paper, including global positioning system (GPS), tide gauge, satellite gravimetry, satellite altimetry, glacial isostatic adjustment (GIA). First, the observations of more than 50 GPS stations from the international GNSS service (IGS) and Greenland network (GNET) in 2007–2018 were processed and the common mode error (CME) was eliminated with using the principal component analysis (PCA). The results show that all GPS stations show an uplift trend and the stations in southern Greenland have a higher vertical speed. Second, by deducting the influence of GIA, the impact of current GrIS mass changes on GPS stations was analysed, and the GIA-corrected vertical velocity of the GPS is in good agreement with the vertical velocity obtained by gravity recovery and climate experiment (GRACE). Third, the absolute sea level change around Greenland at 4 gauge stations was obtained by combining relative sea level derived from tide gauge observations and crustal uplift rates derived from GPS observations, and was validated by sea level products of satellite altimetry. The results show that although the mass loss of GrIS can cause considerable global sea level rise, eustatic movements along the coasts of Greenland are quite complex under different mechanisms of sea level changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Acta Oceanologica Sinica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.