Abstract
Phase-Change Memory (PCM) is known as the next generation of memory thanks to its outstanding properties, such as fast speed, non-volatility, scalability, and low power consumption. Based on these characteristics, PCM can be used in larger expanded memory or faster storage compared to HDD or NAND flash memory. Therefore, various companies are trying to deploy PCM-based memory products. However, studies on deciding the target system of PCM are still insufficient, which is an obstacle to the commercialization of PCM. In this paper, a file system benchmark, Filebench, is evaluated with various operating options to find the most appropriate workload for PCM as storage. An experiment was conducted in a virtual system by mounting PCM with a PCM-aware file system. The results demonstrate that the PCM-based system performs up to 500 times better than traditional storage if executing workloads with a significant amount of write operations and synchronization operations. A number of applications were tested on various configurations of systems, and workload characteristics suitable for the PCM-based system are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEIE Transactions on Smart Processing & Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.