Abstract

Lycopene is a carotenoid widely used as a food and feed supplement due to its antioxidant, anti-inflammatory, and anti-cancer functions. Various metabolic engineering strategies have been implemented for high lycopene production in Escherichia coli, and for this purpose it was essential to select and develop an E. coli strain with the highest potency. In this study, we evaluated 16 E. coli strains to determine the best lycopene production host by introducing a lycopene biosynthetic pathway (crtE, crtB, and crtI genes cloned from Deinococcus wulumuqiensis R12 and dxs, dxr, ispA, and idi genes cloned from E. coli). The 16 lycopene strain titers diverged from 0 to 0.141 g/l, with MG1655 demonstrating the highest titer (0.141 g/l), while the SURE and W strains expressed the lowest (0 g/l) in an LB medium. When a 2 × YTg medium replaced the MG1655 culture medium, the titer further escalated to 1.595 g/l. These results substantiate that strain selection is vital in metabolic engineering, and further, that MG1655 is a potent host for producing lycopene and other carotenoids with the same lycopene biosynthetic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call