Abstract
BackgroundOne in two people with multiple sclerosis (PwMS) will fall in a three-month period. Predicting which patients will fall remains a challenge for clinicians. Standardized functional assessments provide insight into balance deficits and fall risk but their use has been limited to supervised visits. Research questionThe study aim was to characterize unsupervised 30-second chair stand test (30CST) performance using accelerometer-derived metrics and assess its ability to classify fall status in PwMS compared to supervised 30CST. MethodsThirty-seven PwMS (21 fallers) performed instrumented supervised and unsupervised 30CSTs with a single wearable sensor on the thigh. In unsupervised conditions, participants performed bi-hourly 30CSTs and rated their balance confidence and fatigue over 48-hours. ROC analysis was used to classify fall status for 30CST performance. ResultsNon-fallers (p = 0.02) but not fallers (p = 0.23) differed in their average unsupervised 30CST performance (repetitions) compared to their supervised performance. The unsupervised maximum number of 30CST repetitions performed optimized ROC classification AUC (0.79), accuracy (78.4%) and specificity (90.0%) for fall status with an optimal cutoff of 17 repetitions. SignificanceBrief durations of instrumented unsupervised monitoring as an adjunct to routine clinical assessments could improve the ability for predicting fall risk and fluctuations in functional mobility in PwMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.