Abstract

AbstractWe report uncertainties in X‐ray photoelectron spectroscopy (XPS) intensities arising from commonly used methods and procedures for subtraction of the spectral background. These uncertainties were determined from a comparison of XPS intensities reported by volunteer analysts from 28 institutions and the corresponding intensities expected for a set of simulated XPS spectra. We analyzed peak intensities from 32 sets of data for a group of 12 spectra that had been simulated for a monochromated Al Kα source. Each reported intensity was compared with an expected intensity for the particular integration limits chosen by each analyst and known from the simulation design. We present ratios of the reported intensities to the expected intensities for the background‐subtraction methods chosen by the analysts. These ratios were close to unity in most cases, as expected, but deviations were found in the results from some analysts, particularly if the main peak was asymmetrical or if shakeup was present. We showed that better results for the Shirley, Tougaard, and linear backgrounds were obtained when analysts determined peak intensities over certain energy ranges or integration limits. We then were able to recommend integration limits that should be a useful guide in the determination of peak intensities for other XPS spectra. The use of relatively narrow integration limits with the Shirley and linear backgrounds, however, will lead to measures of peak intensities that are less than the total intensities. Although these measures may be satisfactory for some quantitative analyses, errors in quantitative XPS analyses can occur if there are changes in XPS lineshapes or shakeup fractions with change of chemical state. The use of curve‐fitting equations to fit an entire spectrum will generally exclude the shakeup contribution to the intensity of the main peak, and no account will be taken of any variation in the shakeup fraction with change of chemical state. Published in 2009 by John Wiley & Sons, Ltd.Certain commercial products are identified to specify the formats in which the test spectra were distributed and the software with which the test spectra were analyzed by participants. This identification does not imply that the products are endorsed or recommended by the National Institute of Standards and Technology, or that they are necessarily the most suitable for the purposes described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call