Abstract

A study on ultrasound kidney images using proposed dominant Gabor wavelet is made for the automated diagnosis and classification of few important kidney categories namely normal, medical renal diseases and cortical cyst. The acquired images are initially preprocessed to retain the pixels of kidney region. Out of 30 Gabor wavelets, a unique dominant Gabor wavelet is determined by estimating the similarity metrics between original and reconstructed Gabor image. The Gabor features are then evaluated for each image. These derived features are mapped onto 2D feature space using k-mean clustering algorithm to group the data of similar class. The decision boundaries are formulated using linear discriminant function between the data sets of three kidney categories. A k-NN classifier module is used to identify the query input US kidney image category. The results show that the proposed dominant Gabor wavelet provides the classification efficiency of 87.33% for NR, 76.66% for MRD and 83.33% for CC. The overall classification efficiency improves by 18.89% compared to the classifier trained with features obtained by considering all the Gabor wavelets. The outputs of the proposed decision support systems are validated with medical expert to measure the actual efficiency. Also the overall discriminating ability of the systems is accessed with performance evaluation measure – f-score. It has been observed that the dominant Gabor wavelet improves the classification efficiency appreciably. Hence, the proposed method enhances the objective classification and explores the possibility of implementing a computer-aided diagnosis system exclusively for ultrasound kidney images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call