Abstract

Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood glucose levels, resulting from insulin dysregulation. Parkinson's disease (PD) is the most common neurodegenerative motor disorder caused by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta. DM and PD are both age-associated diseases that are turning into epidemics worldwide. Previous studies have indicated that type 2 DM might be a risk factor of developing PD. However, scarce information about the link between type 1 DM (T1DM) and PD does exist. In this work, we have generated a Drosophila model of T1DM based on insulin deficiency to evaluate if T1DM could be a risk factor to trigger PD onset. As expected, model flies exhibited T1DM-related phenotypes such as insulin deficiency, increased content of carbohydrates and glycogen, and reduced activity of insulin signaling. Interestingly, our results also demonstrated that T1DM model flies presented locomotor defects as well as reduced levels of tyrosine hydroxylase (a marker of DA neurons) in brains, which are typical PD-related phenotypes. In addition, T1DM model flies showed elevated oxidative stress levels, which could be causative of DA neurodegeneration. Therefore, our results indicate that T1DM might be a risk factor of developing PD, and encourage further studies to shed light into the exact link between both diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call