Abstract

The present paper is devoted to the quality assessment of two global land surface albedo products developed by Meteo France in the frame of the Copernicus Climate Change Service (C3S) and the LSA-SAF (Satellite Application Facility on Land Surface Analysis), herein called, respectively, VGT (VeGeTation) (the C3Sv1 dataset, derived from VGT sensors onboard Satellites for the Observation of the Earth, also called SPOT) and ETAL (European polar system Ten-day surface ALbedo, derived from Advanced Very High Resolution Radiometers (AVHRR) onboard METeorological OPerational (METOP) satellites). The evaluation study inter-compared these products with measurements at 33 ground stations and two independent operational products, MTAL-R/NRT (Meteosat second generation Ten-day ALbedo Reprocessed/Near Real-Time) and MODIS (MODerate resolution Imaging Spectroradiometer), over two distinct four-year periods. In accordance with the prescription from the Land Product Validation group of the joint Committee on Earth Observation Satellites (LPV/CEOS), the evaluation was addressed per land cover; furthermore, two albedo regimes were considered throughout the evaluation to distinguish between high (over 0.15) and low (below 0.15) surface albedo behaviors. First, we show that both VGT and ETAL products agree well with the measurements and the other satellite products at the ground stations. Second, when inter-compared with MODIS, the results are noteworthy for ETAL as opposed to VGT, with 11 out of 13 land cover types passing the Global Climate Observing System (GCOS) requirements for more than 80% of the sites for albedo values less than 0.15 (compared with none for VGT) and 10 out of 14 land cover types passing the GCOS requirements for more than 50% of the sites for albedo values greater than 0.15 (compared with 5 for VGT). Finally, a pixel-by-pixel analysis reveals that VGT overestimates the surface albedo as compared with MODIS by about 0.02 in absolute value for albedo values less than 0.15 and by about 22% in relative value for albedo values greater than 0.15. The root-mean-square-deviation (RMSD) in absolute value is about 0.015 for albedo values less than 0.15 and 51.5% in relative value for albedo values greater than 0.15. In contrast, the bias for ETAL when compared with MODIS remains very small. Over the four-year period, ETAL overestimates the surface albedo as compared with MODIS by 0.001 in absolute value for the regime of surface albedo less than 0.15 and by about 5.8% in relative value for albedo values greater than 0.15. The RMSD in absolute value is about 0.014 for albedo values less than 0.15 and 19.4% in relative value for albedo values greater than 0.15. Assuming that the MODIS product is a good reference, a relative bias of around 6% can be judged satisfactory for ETAL surface albedo. The lower performance of the VGT (C3Sv1) product is currently the subject of investigation. Work is ongoing to upgrade it further towards the final C3S product.

Highlights

  • Climate monitoring is of paramount importance in the context of climate change [1]

  • This paper aims to evaluate the two new VGT and ETAL surface albedo products developed by Meteo France in the Framework of Copernicus/C3S and Land Surface Analysis (LSA)-Satellite Application Facility (SAF) programs, respectively, following those prescriptions

  • One observes that VGT agrees well with the ground data and even provides the best scores in terms of the RMSD as compared with MODerate resolution Imaging Spectroradiometers (MODIS) and MTAL-R except for Agoufou

Read more

Summary

Introduction

Long-term monitoring of Essential Climate Variables (ECV) through observatories from Earth Observation (EO) instruments onboard geostationary and polar-orbiting satellite systems is a key infrastructure addressing this challenge [2,3]. Land surface albedo is one such ECV and it is defined as the ratio of the upward and downward radiation at the Earth’s surface [4,5]. Climate model surface albedos and other related variables will be improved with satellite measurements (e.g., [8]), but the high sensitivity of the Earth’s climate in terms of surface albedo calls for highly accurate surface albedo products [9]. Other benefits of accurate surface albedo products include weather forecasting [10] and land cover monitoring; more land surface albedo can significantly contribute to the analysis of desertification processes or the identification of trends in vegetation variability [3]

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.