Abstract

Thresholding of pavement images is an important step towards the design of an automated pavement crack detection system. However, traditional automated thresholding techniques generally do not perform well on pavement images. Recently, a number of studies have been conducted proposing different approaches for this thresholding problem. This paper presents a comparative analysis and evaluation of the performance of one of the most promising of these approaches, the regression analysis approach based on artificial neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.