Abstract
Surface plasmon resonance (SPR) spectroscopy has been used to study DNA assembly, DNA hybridization, and protein–DNA interactions on two streptavidin (SA) sensor chips. On one chip, SA molecules are immobilized on a biotin-exposed surface, forming an ordered two-dimensional (2D) SA monolayer. The other chip, BIAcore's SA chip, contains SA molecules immobilized within a three-dimensional (3D) carboxylated dextran matrix. Compared to the 2D chip, the 3D SA matrix allows for a slower immobilization rate of biotinylated DNA due to diffusion limitation in the dextran matrix, but with twice the amount of the immobilized DNA due to the greater number of reactive sites, which in turn enables a higher sensitivity for DNA hybridization detection. Interestingly, having a greater DNA probe dispersion in the 3D matrix does not induce a higher DNA hybridization efficiency. In a study of protein binding to immobilized DNA (estrogen receptor to estrogen response elements), aiming at assessing the DNA sequence dependent protein binding behavior, the 2D and 3D chips produce different binding characteristics. On the 2D chip, the protein binding exhibits a better selectivity to the specific sequences, regardless of binding stringency (e.g. salt concentration), whereas on the 3D chip, the liquid handling system needs to be optimized in order to minimize transport limitations and to detect small affinity differences. Through this study we demonstrate that the physicochemical structure of SPR chips affects the apparent binding behaviors of biomolecules. When interpreting SPR binding curves and selecting a sensor chip, these effects should be taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.