Abstract

The calcium phosphate cements (CPCs) based on α-tricalcium phosphate (α-TCP) are highly attractive for use in medicine and odontology, since they have similar chemical and phase composition of mineral phase of bones (calcium deficient hydroxyapatite (CDHA)). However, one of the biggest difficulties for use of this type of cement is its low mechanical strength due to the presence of undesirable phases, such as β-tricalcium phosphate. The route for obtaining α-TCP is at high temperature by solid state reaction, mixing calcium carbonate and calcium pyrophosphate. The aim of this work was to obtain calcium phosphate cements with improved strength, by studying the obtaining of α-TCP at temperatures of 1300, 1400 and 1500°C. The samples were analyzed by crystalline phases, pH, setting time, particle size, in vitro test (Simulated Body Fluid), porosity, density and compressive strength. The results show that the synthesis temperatures influence strongly the phases of powders obtained and the mechanical properties of cement, being unnecessary quenching for obtaining pure α-TCP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.