Abstract
The utilization of pesticides has increased for destroying pests and protecting crops in the agriculture field. Triazophos is a commonly used organophosphorous insecticide that causes alterations in haematological and histological parameters in fish. The present study was designed to evaluate the effect of triazophos induced innate and cell mediated immunotoxicity in freshwater teleost, Channa punctata. Fishes were exposed to triazophos at concentrations 5 and 10% of LC50 value for 10 and 20 days. Splenic and head kidney macrophage phagocytosis, nitric oxide production and superoxide production were assayed to evaluate the innate immunity. Cell-mediated immunity was measured through splenic and head kidney lymphocyte proliferation in presence of T and B cell mitogens. Results of the present study revealed that macrophage phagocytosis was significantly reduced after in vivo triazophos treatment. Differential suppressive effect of triazophos was also observed where mitogen induced splenic and head kidney lymphocyte proliferations were reduced after 10 and 20 days treatment. Concentration dependent effect of triazophos was observed in in vivo studies where the production of reactive oxygen and nitrogen intermediates were suppressed. This study describes the first investigation of the effect of triazophos on immune functions and will help to determine appropriate ecotoxicity and immunotoxicity in freshwater teleosts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.