Abstract

Loss of forest cover and derived effects on forest ecosystems services has led to the establishment of land management policies and forest monitoring systems, and consequently to the demand for accurate and multitemporal data on forest extent and structure. In recent years, spaceborne Light Detection and Ranging (LiDAR) missions, such as the Global Ecosystem Dynamics Investigation (GEDI) instrument, have facilitated the repeated acquisition of data on the vertical structure of vegetation. In this study, we designed an approach incorporating GEDI and airborne LiDAR data, in addition to detailed forestry inventory data, for estimating tree-growth dynamics for the Laurentides wildlife reserve in Canada. We estimated an average tree-growth rate of 0.32 ± 0.23 (SD) m/year for the study site and evaluated our results against field data and a time series of NDVI from Landsat images. The results are in agreement with expected patterns in tree-growth rates related to tree species and forest stand age, and the produced dataset is able to track disturbance events resulting in the loss of canopy height. Our study demonstrates the benefits of using spaceborne-LiDAR data for extending the temporal coverage of forestry inventories and highlights the ability of GEDI data for detecting changes in forests’ vertical structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call