Abstract

Management responses to invasive forest insects are facilitated by the use of detection traps ideally baited with species-specific semiochemicals. Emerald ash borer, Agrilus planipennis Fairmaire, is currently invading North American forests, and since its detection in 2002, development of monitoring tools has been a primary research objective. We compared six trapping schemes for A. planipennis over 2 yr at sites in four U.S. states and one Canadian province that represented a range of background A. planipennis densities, canopy coverage, and ash basal area. We also developed a region-wide phenology model. Across all sites and both years, the 10th, 50th, and 90th percentile of adult flight occurred at 428, 587, and 837 accumulated degree-days, respectively, using a base temperature threshold of 10°C and a start date of 1 January. Most trapping schemes captured comparable numbers of beetles with the exception of purple prism traps (USDA APHIS PPQ), which captured significantly fewer adults. Trapping schemes varied in their trap catch across the gradient of ash basal area, although when considering trap catch as a binary response variable, trapping schemes were more likely to detect A. planipennis in areas with a higher ash component. Results could assist managers in optimizing trap selection, placement, and timing of deployment given local weather conditions, forest composition, and A. planipennis density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.