Abstract

General Purpose Graphics Processing Units (GPGPUs) are increasingly adopted thanks to their high computational capabilities. GPGPUs are preferable to CPUs for a large range of computationally intensive applications, not necessarily related to computer graphics. Within the high performance computing context, GPGPUs must require a large amount of resources and have plenty execution units. GPGPUs are becoming attractive for safety-critical applications where the phenomenon of transient errors is a major concern. In this paper we propose a novel transient error fault injection simulation methodology for the accurate simulation of GPGPUs applications during the occurrence of transient errors. The developed environment allows to inject transient errors within all the memory area of GPGPUs and into not user-accessible resources such as in streaming processors combinational logic and sequential elements. The capability of the fault injection simulation platform has been evaluated testing three benchmark applications including mitigation approaches such as Duplication With Comparison, Triple Modular Redundancy and Algorithm Based Fault Tolerance. The amount of computational costs and time measured is minimal thus enabling the usage of the developed approach for effective transient errors evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.