Abstract

Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007–2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1–2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts.

Highlights

  • Knowledge of the diet of a species is essential to understanding its biology and establishing appropriate conservation and management strategies [1], but diet assessment is methodologically challenging [2]

  • Of the five methods that we used to analyze Goshawk diet, camera images allowed us to detect 2664 prey items, compared to 824 items detected in feather-and-hair remains, 633 in bones, and 1150 in feather-hair-and-bone pools

  • This implies that a large proportion of prey items known to be delivered to nests was not detected in analyses of prey remains; this proportion was at least 69% in analysis of feather-and-hair remains, 76% in analysis of bones, and 57% in analysis of feather-hair-and-bone combined

Read more

Summary

Objectives

We performed indirect analyses of four types of prey remains collected from nests and plucking sites: pellets, bones, feather-andhair remains, and feather-hair-and-bone remains combined.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call