Abstract

Dengue, chikungunya, and zika are some of the fatal diseases that are causing a high number of deaths. Therefore, this work is designed to provide an effective control measure against these species of mosquito. Vitex negundo L. leaves were used to synthesize silver nanoparticles (AgNPs), which were proven to have significant larvicidal and pupicidal activity when tested against the developmental stages of Aedes aegypti. The nanoparticles were synthesized using silver nitrate, and the synthesized nanoparticles were characterized using techniques such as UV-visible spectrometry, Fourier Transform Infrared Spectrometry, and X-ray diffraction to confirm the presence of nanoparticles. The conditions for the larval hatchability from the first instar to adult stages were optimized at different pH ranges with three water sources: reverse osmosis water, tap water, and stagnant water. The LC50 of the subjected stages was found to be 441.43, 308.74, and 490.66 µl/L for the third and fourth instar and pupal stages of A. aegypti, respectively. The plant secondary metabolites were utilized as ligand compounds to target mosquito juvenile hormone-binding protein. Our study attempted to identify a plant-based nanomaterial that showed promising results in controlling larval development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call