Abstract

BackgroundInsecticide-based interventions play an integral role in malaria vector control. However, the continued spread of insecticide resistance threatens to undermine progress made thus far and may ultimately lead to operational failure of current control measures. Clothianidin and chlorfenapyr both have unique modes of action and have expanded the number of insecticide classes available to vector control programmes. Prior to field use, it is imperative to establish their toxicity against local mosquito populations and evaluate potential cross-resistance with other chemicals used contemporarily or historically. The aim of this study was to determine the diagnostic doses of clothianidin and chlorfenapyr and their efficacies against Anopheles arabiensis, the predominant Ethiopian malaria vector species.MethodsA range of doses of clothianidin and chlorfenapyr were tested, using modified WHO susceptibility tests and CDC bottle bioassays, respectively, against an Ethiopian susceptible laboratory strain and a wild population of An. arabiensis collected from Oromia Region, Ethiopia. Cross-resistance to other public health insecticides: carbamates (bendiocarb and propoxur), organophosphate (malathion) and pyrethroids (deltamethrin and permethrin), was assessed in the same mosquito populations using CDC bottle bioassays.ResultsComplete mosquito mortality was observed with the laboratory strain using the recommended diagnostic doses for clothianidin (2%/filter paper) and chlorfenapyr (100 µg/bottle). The field population was resistant to malathion (83% mortality), capable of surviving 2×, 5× and 10× the diagnostic dose of both deltamethrin and permethrin, but susceptible to bendiocarb and propoxur. The field population of An. arabiensis was significantly more susceptible to clothianidin, reaching 100% mortality by day 2 compared to the laboratory strain (100% mortality by day 3). In contrast, the wild population was less susceptible to chlorfenapyr, with the highest mortality of 99% at 72 h using 200 µg/bottle compared to the laboratory colony, which reached complete mortality at 50 µg/bottle by 24 h.ConclusionsThe putative diagnostic doses of clothianidin and chlorfenapyr are appropriate for monitoring resistance in An. arabiensis from Ethiopia. The unique modes of action and an absence of cross-resistance render clothianidin and chlorfenapyr potential candidates for inclusion in the National Malaria Control Programme vector control efforts, particularly in areas with high pre-existing or emergent resistance to other insecticide classes.

Highlights

  • Insecticide-based interventions play an integral role in malaria vector control

  • This study determined the diagnostic doses of clothianidin and chlorfenapyr for resistance monitoring of field populations of An. arabiensis in Ethiopia and investigated the prevalence of cross-resistance to other chemicals already in use by the National Malaria Control Programmes (NMCPs)

  • Additional laboratory studies have reported that an Anopheles stephensi colony which was resistant to DDT, malathion and deltamethrin, required lower lethal concentrations of the neonicotinoids imidacloprid, thiacloprid and thiamethoxam, compared to a susceptible counterpart [40], while a tri-mixture of piperonyl butoxide (PBO), deltamethrin and dinotefuran was more effective than a combination of PBO and deltamethrin in killing a pyrethroid resistant An. gambiae strain (VKPR: homozygous for kdr) [26]

Read more

Summary

Introduction

The continued spread of insecticide resistance threatens to undermine progress made far and may lead to operational failure of current control measures. Clothianidin and chlorfenapyr both have unique modes of action and have expanded the number of insecticide classes available to vector control programmes. The current recommendations for insecticide resistance management rely on tactical deployment of the active ingredients used for IRS and on LLINs in rotation, combinations ( LLINs), mosaics and mixtures [3, 6] These management strategies are restricted in their potential effectiveness by the limited choice of available insecticides. The urgent need for new chemicals with novel modes of action has been the impetus driving the evaluation of established agricultural insecticides to control resistant mosquito vector populations [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.