Abstract

We investigated the toxicity and biocompatibility of a novel Mg-3Nd-1Gd-0.3Sr-0.2Zn-0.4Zr (abbreviated to Mg-Nd-Gd-Sr) alloy in the osteoblastic cell line MC3T3-E1 as osteoblasts play an important role in bone repair and remodeling. We used cytotoxicity tests and apoptosis to investigate the effects of the Mg-Nd-Gd-Sr alloy on osteoblastic cells. Cell bioactivity, cell adhesion, cell proliferation, mineralization, ALP activity, and expression of BMP-2 and OPG by osteoblastic cells were also used to investigate the biocompatibility of Mg-Nd-Gd-Sr alloy. The results showed that the Mg-Nd-Gd-Sr alloy had no obvious cytotoxicity, and did not induce apoptosis to MC3T3-E1 cells. Compared with the control group, the number of adherent cells within 12h was increased significantly in each experimental group (P < 0.05); the OD value of MC3T3-E1 cells was increased significantly in each experimental group on days 1 and 3 of culture (P < 0.05); the number of mineralized nodules formed in each experimental group was significantly increased (P < 0.05), and ALP activity was significantly increased in each experimental group (P < 0.05). RT-PCR results showed that the mRNA expression of BMP-2 and OPG was significantly higher in each experimental group compared with the control group (P < 0.05). Western blotting showed that the Mg-Nd-Gd-Sr alloy extract significantly increased the protein expression of BMP-2 and OPG compared with the control group (P < 0.05). Our data indicated that the novel Mg-Nd-Gd-Sr-Zn-Zr alloy had no obvious cytotoxic effects, and did not cause apoptosis to MC3T3-E1 cells; meanwhile it promoted cell adhesion, cell proliferation, mineralization, and ALP activity of osteoblasts. During this process, there was an increase in the expressions of BMP-2 and OPG mRNAs and proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.