Abstract
The calculated results from various sediment transport formulas often differ from each other and from measured data. Some parameters in the sediment transport formulas are more effective than others to estimate total sediment load. In this study, an Artificial Neural Network (ANN) model is trained using four dominant parameters of sediment transport formulas. ANN models are able to reveal hidden laws of natural phenomena such as sediment transport process. The results of ANN and some total bed material load sediment transport formulas have been compared to indicate the importance of variables which can be used in developing sediment transport formulas. To train ANN, average flow velocity, water surface slopes, average flow depth, and median particle diameter are used as dominant parameters to estimate total bed material load. Two hundreds and fifty samples are used to train the ANN model. Twenty-four sets of field data not used in the training nor calibration of ANN are used to compare or verify the accuracy of ANN and some well-known total bed material load formulas. The test results show that the ANN model developed in this study using minimum number of dominant factors is a reliable and uncomplicated method to predict total sediment transport rate or total bed material load transport rate. Results show that the accuracy of formulas in descending order are those by Yang (1973), Laursen (1958), Engelund and Hansen (1972), Ackers and White (1973), and Toffaleti (1969). These results are similar to those made by ASCE (1982) based on laboratory and field data not used in this paper. Study results also show that the formulas based on physical laws of sediment transport, like those formulas that were developed based on power concept, are more accurate than other formulas for estimating total bed material sediment load in rivers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.