Abstract

Due to a recent upward trend in the price of uranium and subsequent increased interest in uranium mining, accurate modeling of baseline dose from environmental sources of radioactivity is of increasing interest. Residual radioactivity model and code (RESRAD) is a program used to model environmental movement and calculate the dose due to the inhalation, ingestion, and exposure to radioactive materials following a placement. This paper presents a novel use of RESRAD for the calculation of dose from non-enhanced, or ancient, naturally occurring radioactive material (NORM). In order to use RESRAD to calculate the total effective dose (TED) due to ancient NORM, a procedural adaptation was developed to negate the effects of time progressive distribution of radioactive materials. A dose due to United States' average concentrations of uranium, actinium, and thorium series radionuclides was then calculated. For adults exposed in a residential setting and assumed to eat significant amounts of food grown in NORM concentrated areas, the annual dose due to national average NORM concentrations was 0.935 mSv y(-1). A set of environmental dose factors were calculated for simple estimation of dose from uranium, thorium, and actinium series radionuclides for various age groups and exposure scenarios as a function of elemental uranium and thorium activity concentrations in groundwater and soil. The values of these factors for uranium were lowest for an adult exposed in an industrial setting: 0.00476 microSv kg Bq(-1) y(-1) for soil and 0.00596 microSv m(3) Bq(-1) y(-1) for water (assuming a 1:1 234U:238U activity ratio in water). The uranium factors were highest for infants exposed in a residential setting and assumed to ingest food grown onsite: 34.8 microSv kg Bq(-1) y(-1) in soil and 13.0 microSv m(3) Bq(-1) y(-1) in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.