Abstract

Torsional oscillations greatly affect performance and determine the bandwidth (BW) and damping of speed loops. Backlash due to gear reducers can also contribute to the triggering of oscillations, especially when the drive runs at very low load torque. This paper presents a detailed evaluation of these effects in typical electromechanical drive trains applied to paper machine sections. The cases evaluated consider torsional oscillations in two-mass and three-mass systems, and the effect of shaft diameter and length on the resonant frequencies of three typical paper machine sections. Time-domain response plots are evaluated to show the effect of speed response overshoot, reducer backlash, and step or ramp speed commands. Based on these results, mechanical design guidelines are given for the most significant drive train components in order to minimize torsional oscillations of the speed-controlled drive system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.