Abstract

This paper presents the results of the measurement of tire footprints in soil. The research was conducted under laboratory conditions using soil-filled cases. The research objects were two tires: a radial tire and a bias-ply tire of the same size. The variable parameters were vertical load (7.8 kN, 15.7 kN, 23.5 kN) and inflation pressure (0.8 bar, 1.6 bar, 2.4 bar). Test benches with a mounted tire, a soil case, and a 3D scanner were used in the research. Using the test bench, a tire was loaded with each inflation pressure, and a tire footprint was generated in the soil. Then, a 3D scanner was used to scan the tire footprint, and the parameters of length, width, depth, and tire–soil contact area (as a spatial image) were evaluated using special software. Then, mathematical models were formulated (separately for each type of tire) to describe the tire–soil contact area of the tire footprint as a function of the vertical load and inflation pressure. It was found that the depth of the tire footprint is an important parameter that influences the tire–soil contact area value. However, it was also found that with the right combination of inflation pressure and vertical load, a longer and wider, but shallower, tire footprint can be generated, the contact area value of which is similar to that of a deeper footprint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call