Abstract

Abstract Permeation grouting using weak grouts such as bentonite grout is one of the effective methods to mitigate liquefaction in loose saturated sand deposits. While a flow parameter of the grout such as yield stress determines its penetrability into the deposit and resistance to groundwater flow, a dynamic parameter such as critical storage modulus evaluates post-grouting performance of the treated soils under cyclic loading condition. However, the yield stress and critical storage modulus should be obtained through two different types of rheological tests: drag and oscillatory shear test. Although previous research has suggested a method to evaluate yield stress from an oscillatory shear test, the conventional method does not consider the time-dependent nature of bentonite grout, which is one of its crucial properties as a grout. In this study, flow and dynamic rheological properties of bentonite suspensions were measured using drag (stress ramp) and oscillatory shear (strain sweep) tests with a vane geometry for various weight fractions of bentonite suspensions (5, 7.5, 10, and 12 %) and resting times (0 to 480 h). At different resting times, elastic and crossover stresses from strain sweep tests were compared to yield stresses obtained from stress ramp tests. The results showed that both the elastic and crossover stresses from strain sweep tests were significantly lower (40 %–60 %) than the yield stresses measured by stress ramp tests. The comparison also showed a dependency on particle fractions. In order to evaluate yield stress from the oscillatory shear test, a time-independent relationship between yield stress and critical storage modulus was proposed. This study suggests an economical approach to evaluate an important design parameter (“undisturbed” yield stress) in permeation grouting using bentonite grout.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.