Abstract

Irreversible CYP3A inhibition by drugs constitutes one of the major causes of inhibition-based drug interactions. We evaluated time-dependent inactivation of CYP3A in cryopreserved human hepatocytes for six structurally diverse compounds known to exhibit this property. Inactivation kinetic parameters were also determined using human liver microsomes. Except for diclofenac, which did not cause CYP3A inactivation either in microsomes or in hepatocytes at concentrations up to 100 microM, time-dependent inactivation was observed in hepatocytes for amprenavir, diltiazem, erythromycin, raloxifene, and troleandomycin. The observed inactivation potency in hepatocytes (observed IC50) was compared with the potency predicted using microsomal parameters (predicted IC50). Despite satisfactory prediction for troleandomycin (1.35 and 2.14 microM for the predicted and observed IC50, respectively), over-prediction of inactivation was observed for raloxifene, amprenavir, and erythromycin (observed IC50 values 6.2-, 55-, and 7.8-fold higher, respectively, than the predicted IC50). By contrast, the observed IC50 for diltiazem in hepatocytes was approximately 4-fold lower than the IC50 predicted from microsomal data (under-prediction). After correcting for factors including nonspecific binding and inactivator consumption, prediction was significantly improved for raloxifene (the observed IC50 then became 2-fold higher than the predicted IC50) and for amprenavir to a lesser extent. A specific P-glycoprotein inhibitor, 4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-N-[2-(3.4-dimethoxyphenyl)ethyl]-6,7-dimethoxyquinazolin-2-amine (CP-100356), modulated the observed CYP3A inactivation potency by erythromycin and troleandomycin. In summary, these studies reveal three important factors that must be considered when microsomal inactivation parameters are used to predict inhibition-based drug interactions in intact cell systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.