Abstract
It is well recognized that the impact-acoustic emissions contain information that can indicate the presence of the adhesive defects in the bonding structures. In our previous papers, artificial neural network (ANN) was adopted to assess the bonding integrity of the tile–walls with the feature extracted from the power spectral density (PSD) of the impact-acoustic signals acting as the input of classifier. However, in addition to the inconvenience posed by the general drawbacks such as long training time and large number of training samples needed, the performance of the classic ANN classifier is deteriorated by the similar spectral characteristics between different bonding status caused by abnormal impacts. In this paper our previous works was developed by the employment of the least-squares support vector machine (LS-SVM) classifier instead of the ANN to derive a bonding integrity recognition approach with better reliability and enhanced immunity to surface roughness. With the help of the specially designed artificial sample slabs, experiments results obtained with the proposed method are provided and compared with that using the ANN classifier, demonstrating the effectiveness of the present strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.