Abstract

AbstractMultigrid has been a popular solver method for finite element and finite difference problems with regular grids for over 20 years. The application of multigrid to unstructured grid problems, in which it is often difficult or impossible for the application to provide coarse grids, is not as well understood. In particular, methods that are designed to require only data that are easily available in most finite element applications (i.e. fine grid data), constructing the grid transfer operators and coarse grid operators internally, are of practical interest. We investigate three unstructured multigrid methods that show promise for challenging problems in 3D elasticity: (1) non‐nested geometric multigrid, (2) smoothed aggregation, and (3) plain aggregation algebraic multigrid. This paper evaluates the effectiveness of these three methods on several unstructured grid problems in 3D elasticity with up to 76 million degrees of freedom. Published in 2002 by John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.