Abstract

This study conducted a comprehensive evaluation of three satellite precipitation products (TRMM (Tropical Rainfall Measuring Mission) 3B42, CMORPH (the Climate Prediction Center (CPC) Morphing algorithm), and PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks)) using data from 52 rain gauge stations over the Meichuan watershed, which is a representative watershed of the Poyang Lake Basin in China. All the three products were compared and evaluated during a 9-year period at different spatial (grid and watershed) and temporal (daily, monthly, and annual) scales. The results showed that at daily scale, CMORPH had the best performance with coefficients of determination (R2) of 0.61 at grid scale and 0.74 at watershed scale. For precipitation intensities larger than or equal to 25 mm, RMSE% of CMORPH and TRMM 3B42 were less than 50%, indicating CMORPH and TRMM 3B42 might be useful for hydrological applications at daily scale. At monthly and annual temporal scales, TRMM 3B42 had the best performances, with highR2ranging from 0.93 to 0.99, and thus was deemed to be reliable and had good potential for hydrological applications at monthly and annual scales. PERSIANN had the worst performance among the three products at all cases.

Highlights

Read more

Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.