Abstract

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.

Highlights

  • The results indicate racy assessment result, the random forest (RF) classifier achieved an overall accuracy (OA) of up to 95.60% and accurately that the RF classifier performed excellently by creating an accurate terrace inventory map identified the terraces among the object-based classifiers

  • The three indicates that for terrace mapping, RF is more reliable than k-nearest neighbor (KNN) or XGBoost

  • Artificial terraces are common around the world and are of great importance in food production, water and soil conservation, and ecologic protection

Read more

Summary

Introduction

Artificial terraces, as a typical artificial landform, are of great importance to agricultural production and soil and water conservation [1]. The construction of artificial terraces enhances water infiltration, reduces the risk of soil erosion, and improves biodiversity [2,3]. Artificial terraces are widely distributed around the world because of these advantages [4]. Many previous studies reported their effects on soil and water processes [5,6,7]. Many artificial terraces are threatened by land degradation and soil erosion because of land abandonment and a lack of maintenance [8]. The Loess Plateau in China, which is a major agricultural production region in China, suffers from severe soil erosion and is

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call