Abstract

Considering the importance of the presence of uncertainties in the design of complex engineering systems, in this research multidisciplinary design optimization process for a bipropellant propulsion system in the presence of uncertainties, which in addition to minimizing the system mass, has a high robust. Based on this, the multidisciplinary design view of the bipropellant propulsion system is expressed in both optimum design and optimum robust design. The continued with the application of uncertainties, the mass, operational and geometric results of the propulsion system are expressed in terms of optimum design, robust design and optimum robust design. According to the results, it is shown that the lowest mass occurs in optimum design mode. But with uncertainties, it is observed at this point that it has the least robust and reliability. It also attempts to explain the difference between the concepts of robust design and optimum design with the help of results

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call