Abstract
Automotive businesses often delegate logistical tasks to third-party logistics (3PLs) service providers to acquire a competitive edge in the dynamic market. Nevertheless, selecting the most suitable third-party logistics (3PL) partner is a multifaceted undertaking that needs careful evaluation of several criteria and alternatives. This research aims to introduce an integrated grey Multiple Criteria Decision Making (MCDM) framework for automotive businesses to deal with the multidimensional 3PL selection decision problem. This framework incorporates an enhanced Preference Selection Index (PSI), Logarithmic Percentage Change-driven Objective Weighting (LOPCOW), and Mixed Aggregation by Comprehensive Normalization Technique (MACONT). The LOPCOW-G and grey PSI (PSI-G) methods extract the criterion weights, whereas the MACONT-G method ranks the alternatives. The suggested framework's practicality is shown by conducting a case study about evaluating and selecting a third-party logistics (3PLs) provider. The findings indicate that the parameters of significant importance are “skilled workforce (0.0977),” “financial strength (0.0901),” and “IT-IS competence (0.0839).” Furthermore, TPL4 has been recognized as the most optimum option with a value of 0.4797. The MACONT-G model is as well compared against other grey MCDM techniques to assess the validity of the proposed model. The Pearson correlation coefficient between MACONT-G and the other models based on grey sets is 0.958, suggesting a significant and positive link. Furthermore, it is worth noting that a sensitivity analysis has been conducted to validate the accuracy and reliability of the created framework. In conclusion, this study has identified managerial and policy implications that might assist policymakers and executives in effectively evaluating 3PL providers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.