Abstract
It has been reported that application of tensile axial stress can simultaneously increase quality factor and resonant frequency for micromechanical resonators. In this study, we formulate an analytical model for evaluating thermoelastic damping in micromechanical resonators based on the thermal energy method, in which thermal conductions in both thickness direction and axial direction are considered. An explicit expression for thermoelastic damping in the form of infinite series has been obtained. The proposed analytical model is further validated by finite element analysis. Results of the present study demonstrate that the 2D model needs to be adopted in order to accurately evaluate thermoelastic damping of micromechanical resonators with axial pretension. In addition, the 2D model proposed in the present study eliminates the inherent inconsistency entailed in the 1D model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.