Abstract

As the demand for coffee has increased, by-product disposal has become a challenge to solve. Many studies are being conducted on how to use coffee waste as building materials to recycle it. In this study, the thermal performance and acoustic performance of a composite developed using bio-based microencapsulated phase change material (MPCM) and coffee waste were evaluated, and the composite was applied as building material. The coffee waste was successfully degreased with ethanol to produce composites, and removal of contaminants and oils was confirmed via scanning electron microscopy. In the phase change process of MPCM, an appropriate amount of thermal energy is absorbed and stored, and the temperature is maintained. MPCM was used in the mixture and the improved thermal performance was evaluated via differential scanning calorimetry analysis, revealing a latent heat of 3.8 J/g for MPCM content of 10%. Further, thermal imaging cameras revealed that an increase in the proportion of MPCM leads to a slower decrease in temperature because of the heat preserved by MPCM over time. In an acoustic performance evaluation, impedance tube test results showed different aspects depending on low, mid, and high-frequency bands. Specifically, at medium frequencies, which correspond to the range of noise generated in cafes, specimens fabricated using MPCM were confirmed to exhibit a higher sound absorption coefficient and an improved acoustic performance. Hence, the composite can be considered an eco-friendly building material with promising thermal and acoustic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.