Abstract

The thermal stability of multilayered nanostructured coatings is evaluated by analyzing the diffusion mobility of layer components. The possibility of increasing the thermal stability of multilayered coatings based on mutually soluble Ti–Al–N and Cr–N layers due to the introduction of an additional barrier layer based on Zr–N into a multilayered nanostructure is investigated in detail. Calculated diffusivities of basic metallic elements of the coating into corresponding nitride layers upon heating in a temperature range of 800–1000°C evidence the absence of noticeable diffusion spread of layer boundaries in the presence of the Zr–N-based barrier layer. For example, their values lower upon its introduction (it is found at t = 1000°C, cm2/s: DCr/TiN = 5 × 10–17, Dcr/ZrN = 2 × 1018, \({D_{Ti/C{r_2}N}}\) = 9 × 10–18, and DTi/ZrN = 3 × 10–18). The physicomechanical properties of coatings do not vary upon their vacuum annealing at t < 900°C; however, they noticeably lower with a further increase in temperature due to the degradation of a multilayered coating structure during annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.