Abstract

Water conservation is an important function of forest ecosystems, but it is still unclear which forest types function best in this regard. We investigated the water conservation function indicators including the water-holding rate of branches and leaves (BLwr), water-holding capacity of litter (Lwc), water absorption rate of litter (Lwr), soil infiltration rate (Ir), soil and water content (SWC), soil water storage (SWS), and soil organic matter (SOM) accumulation of five forest types (Larix gmelinii forests, Pinus koraiensis forests, Robinia pseudoacacia forests, Pinus tabulaeformis forests, and mixed forests) and evaluated them using the gray correlation method (GCM). The results indicate that the BLwr of five stands in the study area varied from 18.3% to 33.5%. The SWC and SWS of the R. pseudoacacia stand were 13.76% and 178.9 mm, respectively, which was significantly higher than that of the other stands (p < 0.05). The SOM was similar for the R. pseudoacacia (0.23%), mixed forest (0.22%), and L. gmelinii (0.22%) sites. The BLwr, Lwc, Lwr, SWC, and SWS values of broad-leaved tree species were higher than those of the mixed species, followed by those for coniferous tree species. Soil infiltration rate followed the order L. gmelinii > P. koraiensis > mixed forest > P. tabulaeformis > R. pseudoacacia. Based on our results, the R. pseudoacacia stand had the highest water conservation ability, while the lowest performance was found for the P. tabuliformis site. This suggests that, in order to enhance the water conservation function of forests in northeastern China, the focus should be on the establishment of R. pseudoacacia forests.

Highlights

  • Forest ecosystems are the most widely distributed, complex, and abundant terrestrial ecosystems

  • The water conservation function of forests is greatly influenced by species composition, stand structure, soil type, and external disturbances [9,10]

  • The soil organic matter content was determined via the potassium dichromate volumetric method [25], while for the assessment of the soil water content (SCW), the soil was oven-dried at 105 ◦C until constant mass [26], and the percentage of the lost mass in the sample was calculated

Read more

Summary

Introduction

Forest ecosystems are the most widely distributed, complex, and abundant terrestrial ecosystems They have numerous hydrological functions, such as water conservation, water regulation and flood mitigation, and water quality improvement [1,2,3]. The water conservation function of forests is greatly influenced by species composition, stand structure, soil type, and external disturbances [9,10]. Evaluating the capacity of forests to conserve water is a research hotspot, and numerous measurement methods have been developed in the last 100 years [15]. TThhee mmoouunnttaaiinnoouuss aarreeaa ooff EEaasstteerrnn LLiiaaoonniinngg iiss aa ttyyppiiccaall sseeaassoonnaall ddrryy aarreeaa iinn CChhiinnaa. LLaarriixx ggmmeelliinniiii,, PPiinnuuss kkoorraaiieennssiiss,, RRoobbiinniiaa ppsseeuuddooaaccaacciiaa,, PPiinnuuss ttaabbuullaaeeffoorrmmiiss,, aanndd mmiixxeedd ffoorreessttss aarree wwiiddeellyy ddiissttrriibbuutteedd iinn tthhee eeaasstteerrnn LLiiaaoonniinnggMMoouunntatianisns[22[2].2]A. LLaarriixx ggmmeelliinniiii,, PPiinnuuss kkoorraaiieennssiiss,, RRoobbiinniiaa ppsseeuuddooaaccaacciiaa,, PPiinnuuss ttaabbuullaaeeffoorrmmiiss,, aanndd mmiixxeedd ffoorreessttss aarree wwiiddeellyy ddiissttrriibbuutteedd iinn tthhee eeaasstteerrnn LLiiaaoonniinnggMMoouunntatianisns[22[2].2]A. fAtefrtelornlgo-ntegr-mternmatunraatlusreallecsteiolenctainodn caon-edvocolu-etivoonl,utthieoyn,hathveeyshhoawven sahsotwronnga estcroolnoggieccaol laodgaicpatlaabdilaitpyt.aHbioliwtye.vHeor,wweevdero, wnoetdkononwot wknhoicwh wfohreicsht tfyopreesht atysptehehahsigthheeshtiwghaetestr wcoanteserrcvoantisoenrvcaatpioancitcya,pmacaiktyin, gmiatkninecgesitsanryecteosscaormy ptoarceotmhepsaerefotrheesstse, fionrceosrtps,orinatcionrgpogrlaotbinalgcglilmobaatel cclhimanagtee dchaatan.gIendthatias.sItnudthy,isbsatsueddyo,nbathseedmoenchthaenimsmecahnadnidsmefinanitdiodneoffintihteiownaotfetrhceonwsaetrevractoionnsefurvnacttiioonn foufnfcotrieosnt eocfofsoyrsetsetmesc,ofsryosmtemthse, pfreorsmpetchteivpeesrosfpceacntiovpesy owfactaenr ohpoyldwinagt,elrithteorldwinatge,rlihtoteldr iwnga,telirttheorlwdiantger, laitbtseorrwptaitoenr, aabnsdorspotiilonw,aatnedr sstooirlawgea,tetrhestowraatgeer, cthonesweravtaertioconncsaeprvaactiitoiens coafpdaicffiteieresnotffdoirfefsetresntatnfdorseisnt sntoarntdhseainstenronrtChheainstaewrneCreheinvaalwuaetreedeuvsailnugattehde ugsrianygctohrereglaratiyoncomrreetlhaotido.n method

SSttuuddyySSiitteess
Experimental Design
Branches and Leaves
Litter
Measurement of Soil Infiltration Rate
Soil Moisture and Nutrient Determination
Statistical Analysis
Water-Holding Rates of Branches and Leaves of Different Forest Types
Water-Holding Capacity and Litter Rate under Different Forest Types
Water-Holding Ca2p0acity anad Litter Rate under Different Forest Types d
Soil Infiltration Rates under Different Forest Types
Soil Water Content and Storage under Different Forest Types
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.