Abstract
In this paper, we study a finite capacity queue where the arrival process is a special case of the discrete time Markov modulated Poisson process, the service times are generally distributed, and the server takes repeated vacations when the system is empty. The buffer acceptance strategy is based on a generalized push-out scheme: when the buffer is full, an arriving customer pushes out the Nth customer in the queue, where N takes values between 2 and the capacity of the system, and the arriving customer joins the end of the queue. Such a strategy is important when, as well as short waiting times for served customers, the time a pushed-out customer occupies a buffer space is also an important performance measure. The Laplace transform of the waiting time of a served customer is determined. Numerical examples show the influence of the bustiness of the input process and also the trade-off between the average waiting time of served customers and the occupancy of the buffer space of pushed-out customers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.