Abstract
In previous studies, the Yonsei University (YSU) planetary boundary layer (PBL) scheme implemented in the Weather Research and Forecasting (WRF) model was reported to perform less well at night, while performing better during the day. Compared to observations, predicted nocturnal low‐level jets (LLJs) were typically weaker and higher. Also, the WRF model with Chemistry (WRF/Chem) with the YSU scheme was reported to sometimes overestimate near‐surface ozone (O3) concentration during the nighttime. The updates incorporated in WRF version 3.4.1, include modifications of the nighttime velocity scale used in the YSU boundary layer scheme. The impacts of this update on the prediction of nighttime boundary layers and related implications for wind resource assessment and air quality simulations are examined in this study. The WRF/Chem model with the updated YSU scheme predicts smaller eddy diffusivities in the nighttime boundary layer, and consequently lower and stronger LLJs over a domain focusing on the southern Great Plains area, showing a better agreement with the observations. As a result, related overestimation problems for near‐surface temperature and wind speeds appear to be resolved, and the nighttime minimum near‐surface O3 concentrations are better captured. Simulated vertical distributions of meteorological and chemical variables for weak wind regimes (e.g., in the absence of LLJ) are less impacted by the YSU updates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.