Abstract

The precise prediction of maximum load carrying capacity of bored piles is a complex problem because the load is a function of a large number of factors. These factors include method of boring, method of concreting, quality of concrete, expertise of the construction staff, the ground conditions and the pile geometry. To ascertain the field performance and estimate load carrying capacities of piles, in-situ pile load tests are conducted. Due to practical and time constraints, it is not possible to load the pile up-to failure. In this study, field pile load test data is analyzed to estimate the ultimate load for friction piles. The analysis is based on three pile load test results. The tests are conducted at the site of The Cultural and Recreational Complex project in Port Said, Egypt. Three pile load tests are performed on bored piles of 900 mm diameter and 50 m length. Geotechnical investigations at the site are carried out to a maximum depth of 60 m. Ultimate capacities of piles are determined according to different methods including Egyptian Code of practice (2005), Tan-gent-tangent, Hansen (1963), Chin (1970), Ahmed and Pise (1997) and Decourt (1999). It was concluded that approxi- mately 8% of the ultimate load is resisted by bearing at the base of the pile, and that up to 92% of the load is resisted by friction along the shaft. Based on a comparison of pile capacity predictions using different method, recommendations are made. A new method is proposed to calculate the ultimate capacity of the pile from pile load test data. The ultimate capacity of the bored piles predicted using the proposed method appears to be reliable and compares well to different available methods.

Highlights

  • Pile foundation is an important link in transferring the structural load to the bearing ground located at some depth below ground surface

  • Field pile load test data is analyzed to estimate the ultimate load for friction piles

  • Three pile load tests are performed on bored piles of 900 mm diameter and 50 m length

Read more

Summary

Introduction

Pile foundation is an important link in transferring the structural load to the bearing ground located at some depth below ground surface. To ascertain the field performance and estimate the load carrying capacity, in-situ pile load tests are relied upon. A simple method for calculating static shaft resistance of a pile driven into clay is presented by Mirza (1997) [1]. Applications of the method to half a dozen full scale pile load tests of high quality are described. Except for short piles in very stiff to hard clays, the predictions agree well with the field test measurements. The correlation presented allows an assessment of residual skin friction and indicates the importance of the liquidity index of the clay in static capacity calculations

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call